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1 Introduction

Recently, there has been further important progress towards understanding the finite-size
spectrum of the AdS5 x S superstring. The conjectured quantum integrability of the string
model plays a primal role in those developments.

In the uniform light-cone gauge the string sigma model is described by a two-
dimensional massive integrable quantum field theory defined on a cylinder of circumference
equal to the light-cone momentum Py ; the latter can be viewed as the length L = P, of
the string, see the review [1]. In the limit of infinite L the spectrum of the model is known
to contain a set of elementary particles which transform in the bi-fundamental represen-
tation of the centrally extended superalgebra su(2]2). In addition, there are @Q-particles,
which can be thought of as bound states of @ elementary particles [2]. The @Q-particles
reside into the tensor product of two 4Q-dim atypical totally symmetric multiplets of the
centrally extended su(2|2) algebra. In the infinite L limit the symmetries of the model are
powerful enough to determine the matrix structure of both the fundamental S-matrix [3, 4]
and the S-matrices of Q-particles [5, 6]. Crossing symmetry puts further constraints [7] on
the normalizations of all the S-matrices.

When L is large but finite, the multi-particle states can be approximately described
by the wave function of the Bethe-type [8]. Factorizability of the multi-particle scattering
together with the periodicity condition for the wave function then implies the quantization



conditions for the particle momenta which are encoded into a set of the Bethe-Yang equa-
tions. These equations [9] give a proper (asymptotic) description of the string spectrum for
L large, but they become less and less accurate when the value of L decreases. The effect of a
finite volume manifests itself in the appearance of exponentially small corrections to the par-
ticle energies computed via the Bethe-Yang equations. Derivation of the leading corrections
by means of Liischer’s approach [10] has been in the focus of recent investigations [11]-]20].

To obtain the finite L spectrum, one could try to generalize the Thermodynamic Bethe
Ansatz approach (TBA) originally developed for relativistic integrable models [21]. To this
end, one starts with considering the string sigma model on a torus given by the Cartesian
product of two circles with circumferences L and R, respectively. In the imaginary time
formalism, the circumference of any of these two circles can be regarded as the inverse
temperature in a statistical field theory with the Hilbert space of states defined on the
complementary circle. Interchanging the role of the two-dimensional space and time, and
further taking the limit R — oo, allows one to relate the ground state energy in the original
string model with the free energy (or, depending on the boundary conditions for fermions,
with Witten’s index) in the so-called mirror model; the latter is obtained from the original
theory by a double Wick rotation. It has been shown that the TBA approach is also
capable of accounting for the excited states [22, 23], see [24]-[32] for further results and
different approaches, and also [19] for the recent important development.

If a theory is relativistic, then it coincides with its mirror. The light-cone gauge
string sigma model lacks two-dimensional Lorentz invariance and, for this reason, the
corresponding mirror model is a new theory that requires a separate exploration. In our
previous work [34] the Bethe-Yang equations for elementary particle of the mirror theory
have been derived. Also, the bound states of elementary particles have been classified and
shown to comprise into the tensor product of two 4@Q-dimensional atypical totally anti-
symmetric multiplets of the centrally extended su(2|2) algebra. The Bethe-Yang equations
for the corresponding Q-particles are easily obtained by fusing the elementary equations.!
More recently, we noticed [36] that the mirror Bethe-Yang equations involving auxiliary
roots can be interpreted as the Lieb-Wu equations [37] for an inhomogeneous Hubbard
model [38, 39]. This inhomogeneous Hubbard model becomes homogeneous in the limit of
infinite real momenta of the mirror Q-particles.? Further, we have argued that the solutions
of the Bethe-Yang equations contributing in the thermodynamic limit arrange themselves
into Bethe string configurations similar to the ones appearing in the Hubbard model and we
have obtained the corresponding Takahashi-like equations for the real centers of the string
complexes. This constitutes the string hypothesis for the AdSs x S® mirror theory [36] and
offers an unequivocal way to obtain the corresponding TBA equations.

The aim of the present paper is to derive the TBA equations for the AdSs x S° mirror
theory. This will be done by following the well-established routine, i.e. by passing to the

thermodynamic limit description of the Takahashi equations in terms of the particle-hole

!These equations also follow from the requirement of Yangian symmetry [40].

2The relationship between the equations [9] and the Lieb-Wu equations for the inhomogeneous Hubbard
model was observed earlier [35]. However, for the original string model there is no value of the physical,
i.e. real particle momenta for which the Lieb-Wu equations become homogeneous.



densities with subsequent minimization of the free energy. By exploiting the properties of
the emerging TBA kernels, we will be able to slightly simplify the initial system of the
TBA equations for the particle pseudo-energies. Then we will also attempt to derive the
associated Y-system [41]-[44]. Opposite to the infinite set of the coupled TBA equations,
the Y-system is a local set of equations but it is obtained at the price of “wiping off” a lot of
information from the original TBA system. In some cases this information can be restored
by specifying the analytic properties of the Y-system, as has been nicely demonstrated in
the recent work [19]. We would like to stress, however, that in our present case the success of
deriving the Y-system crucially depends on the analytic properties of the so-called dressing
phase [45] which constitutes a part of the TBA kernel for the @-particles. Although in
the original string theory the dressing phase is believed to be known, both in the strong
coupling asymptotic expansion [46] and for a finite value of the coupling [47], its analytic
properties and the actual expression in the mirror theory are currently terra incognita.
To be precise, the dressing phase by [47] is represented by a double series convergent in
the region || > 1 and |zF| > 1, where fo are kinematic parameters related to the
first and the second particle, respectively. This series admits an integral representation
found by Dorey, Hofman and Maldacena [48] which is valid in the same region of kinematic
parameters. To determine the dressing phase in the mirror region, one has to analytically
continue the corresponding integral representation beyond |xf2| > 1.

The Y-system for the planar AdS/CFT correspondence [49] has been already
conjectured [50] based on the experience with the classical discrete Hirota dynamics in
the O(4) model. Very recently two independent derivations of the Y-system (and the
TBA equations) have been presented [51, 52]. Although we did not attempt to make
a detailed comparison of our results with those by [51, 52|, a bird’s eye survey reveals
definite similarities but also certain differences between our findings. Relegating some of
our comparative remarks to Conclusions, we would like to stress that in our opinion the
question — what is the mirror dressing phase — is the most important one towards an
ultimate understanding of the TBA system.

The paper is organized as follows. Section 2 deals with the thermodynamic limit of the
Takahashi-like equations for the mirror model. In section 3 we derive the TBA equations.
In section 4 we partially simplify the TBA equations and discuss the construction of the
associated Y-system. In the three appendices we summarize the most essential properties
of the mirror kinematics, the relations and properties of the TBA kernels, and the simplified
system of the TBA equations.

2 Integral equations for densities

In the thermodynamic limit we introduce densities p(u) of particles, and densities p(u)
of holes which depend on the real rapidity variable u. We have the following types of
densities (a =1,2)

1. The density pg(u) of the Q-particles, —oo <u<oo,Q =1,...,00



2. The density péoi) (u) of the y-particles with Im(y) < 0, —2 < u < 2. The corresponding
y-coordinate is expressed in terms of u as y = xz(u) where x(u) is defined in (A.1)

3. The density pﬁ) (u) of the y-particles with Im(y) > 0, —2 < u < 2. The corresponding
y-coordinate is expressed in terms of u as y = ﬁ

4. The density pg\jfvw(u) of the M|vw-strings, —co <u<oo, M =1,...,00

5. The density pg\?l)w(u) of the N|w-strings, —co <u <oo, N =1,...,00),

and the corresponding densities of holes.
Introducing a generalized index ¢ which runs over all the densities, one can represent
the system of integral equations arising in the thermodynamic limit in the following

compact form

R dp;

o du "’sz*/o]( u). (2.1)

pi(u) + pi(u) =

where the momentum p; does not vanish only for @Q-particles, and is given by (A.3).
Here the summation over j is assumed, and the star product is defined by the following

composition law

Kijxpj(u) = /du' Kij(u,u")pj(u), (2.2)

where the integration is taken over the range of u specified above. The explicit form of
the kernels K's is discussed below.

The star product (2.2) should be thought of as the left action of the kernels K’s on
pj. In what follows we will also need the right action which is defined as

pj * Kji(u) = / du’ pj (u') Kji (v, ). (2.3)
Equations for Q-particle densities

To derive the integral equation for Q)-particle densities, we rewrite the Bethe-Yang equation
(3.1) in [36] for Q-particles in terms of the function x(u) given by (A.1)

2 x(up — ik
_ ipxR QrQu g
e s o [T T 22
a1 i=1 @(u + 17
l;ék
(o) o
2 N+ x(’l,Lk_ZQk)_ I(VI\)vw )
QM (cx
<IT 11 Qk I HSk wD), (24)
a=1 =1 w(ug + 9 e ) — =1

Here the s[(2) S-matrix Sgg)/ in the uniform light-cone gauge [1] with the gauge parameter
a = 0 can be written in the form [5, 16, 53, 54]

ety (w,u') = S99 (u —u') ! g (u,u) 7, (2.5)



where S99 is given by

S (y — ) = (2.6)

Here Y99 (u, ) is related to the dressing factor ogq as follows

Q Q 1-— , L
w(ut L(Q+2-2)))a(w + L (Q—2K))
Soq(u,u') = oqg(uu) [TT] Ip— — -
i |

1k=1 @(ut£(Q—2j))a(u/+1(Q +2-2k))

Finally, the auxiliary S-matrix is given by

SOM (y o) = x(u—z‘%) — o +iM) .’E(u—i%) — (e —iM) x(u+z‘%)
zv (U x(u+z‘Q) —a(u + i) w(u+i2) — w(u — i) z(u—i%)
fu—u __(Q M + 2j)

H u—u' + < (Q M +25)

(2.8)

Taking the logarithmic derivative of (2.4) with respect to uy, we get in the thermody-
namic limit the following integral equation for the densities of Q-particles and holes

_ R dp
po(u) +po(u) = o Z K39 *poy (2.9)
2
L3 KO K 4 S Kl
a=1 M'=1

Here the kernels K's are

QQ/ o 1 d
Ko (u ) = 57 g og S [(2)( u'), (2.10)

1 d

Qy N — _
K= (u,u') = 57 7 lo " (2.11)

1 d

Qy — _
K7 (u,u') = 57 dul (2.12)

/ 1 d
K9M =——1 2.13

where the operation x is defined in (2.2). Some of the kernels can be expressed in terms
of the basic kernels Kjs(u) and K(u,v), see appendix B, where also many important
properties of the kernels are listed.



Equations for y-particles densities with Im(y) < 0

Next, we take a y(®-particle with the root ylia) = x(u,(ga)) and rewrite the equation (3.6)

in [36] in the following form

(@)
K! (a) o0 ]M\vw (oz) @ oM Ny (@) (@) M
z(u,) -z Uy uy, wy 1
_1:HM H H 9 H g (2.14)
l:lx(ué))_xl M=1 i=1 _UzM"‘i% =1 UQ)—wz(J&HM

where xli =xz(y g+ 2%) for a Q-particle with the real rapidity v .
Taking the logarithmic derivative of (2.14) with respect to ulga), we get in the thermo-

dynamic limit the following integral equation for the densities of y~-particles and holes
P w) + a0 w) = S KM e parr = KU (030 + P0) | - (2.15)
M'=1

Here the kernels K'’s are

/ 1 d
KM N = _— "1
= () 2mi du ©

(2.16)

/ 1 )
K5 (wu') = Kyp(u =) = 5—=——log ————-. (2.17)

Equations for y-particle densities with Im(y) > 0

In the second case Im(y) > 0 the root y,ga) =1/ x(uéa)), and we get in the thermodynamic
limit the following integral equation for the densities of y*-particles and holes

pg(/ )( ) + ﬁ(a)( ) = ]\/[Z,:l [K_:L{_M, * par + Ky x <p§\32|vw + pg&?lw)] . (218)

Here the kernel K ;M’ is

KM (u,u') = ————log (2.19)

Equations for vw-string densities

()

Then, we take a M|vw-string with the coordinates u, ;,, and rewrite the equation (3.13)
in [36] in the following form

a (O‘)
NS (@) @ M oo Nupw

T e
M kM l
”SQl uhukM ”
= kM

g H H SMM kK_Ul((?\ZI’)v (2.20)

— Ul + ’L— M/=1 _

where the auxiliary S-matrices are given by (2.6) and (2.8).



Taking the logarithmic derivative of (2.20) with respect to uy, we get in the thermo-
dynamic limit the following integral equation for the densities of vw-strings and holes

Pt (1) + Pyl (W) = > [K%}){ e par — KMM' pg‘jzww] (2.21)
M'=1
— Kt (ol + )
Here the kernels K's are
/ 1 d !

KO (i) = 5= == log SI M (', u), (2.22)

/ d !
Ko™ (u,u') = Kapr(u —u') = 57 du 108 SMM (y — o), (2.23)
Ko (u,u) = Kar(u— '), (2.24)

and they all are positive.

Equations for w-string densities

Finally we take a M |w-string with the coordinates uéaj)w, and rewrite the equation (3.9)

in [36] in the following form

(@)
Ny @) @) M o N
kM T Y +y « «
0" =11 @ (@) o II 11 SKN(“l(cJ)W_wl(,N)' (2.25)
=1 Y pr — Y 0 T Vg N=1 1=

Taking the logarithmic derivative of (2.25) with respect to u,(ca])\/[, we get in the thermody-

namic limit the following integral equation for the densities of w-strings and holes

P () + P (1) = Kar + <p?(ﬁ) n ,o;‘i)) ~ 3" K o), - (2.26)
M'=1

3 Free energy and equations for pseudo-energies

Having found the equations for the densities of particles and holes, we can proceed with
deriving the integral equations delivering the minimum of the free energy per unit length
for the mirror theory at temperature T = % The free energy in the mirror theory
determines the ground state energy of the light-cone AdSs x S® string theory defined on
the cylinder with the circumference L equal the light-cone momentum P,. In the case we
are mostly interested in L. = J, where J is the angular momentum carried by the string
rotating about the equator of S°.

To be precise, the light-cone string theory has two different sectors. The first sector
contains even winding number string states and it has fermions subject to periodic bound-
ary conditions. This is the sector which has a BPS ground state whose energy should not
receive any quantum corrections. Since the fermions are periodic, the ground state energy

in fact is determined not by the free energy but by Witten’s index of the mirror theory. The



second sector has anti-periodic fermions and has a non-BPS ground state whose energy is
determined by the mirror free energy. To describe both sectors in one go, we consider a
generalized free energy [55] defined by the following equation

o
FoL)=€ -8+ (NG - N, (3.1)

where &£ is the energy per unit length carried by @Q-particle densities

£ = / du Y~ E9u)pg(u) . (3.2)
Q=1

Here gQ(u) is a @-particle energy defined in (A.4), and S is the total entropy,

g /du ig(pQ) +22: <5 <p§°j)> ( )+ i < pM|vw +5(P§\J?w)>> )
Q=1 a=1

M=1

where s(p) denotes the entropy function of densities of particles and holes

s(p) = plog (1 + g) + plog (1 + g) . (3.3)

Then, 1/L is the temperature of the mirror theory, i7y/L plays the role of a chemical

@)

potential, and N l(p is the fermion number which counts the number of y(a)—particles which

are the only fermions in our system
1 2 1 1 2 2
NP =N = [ (0 )+ 5200 o200 - A2 w) 3.4

The relative minus sign between N },1) and N },2) is needed for the reality of the free en-

w_»

ergy, for relativistic examples see [55]. In principle, the choice of “+” or sign should not

matter at v = 7 where (3.1) becomes Witten’s index. If v = 0 we get the usual free energy.

3.1 Derivation of the equations

Thus, we need to minimize the free energy at temperature T' = 1/L defined by the
following equation

2
Fy(0) = [ ZSQ w) = TS )+ AT w) - 2| (35)
a=1

The consideration is standard and general. We first write the free energy in compact form
as follows

L)= /du Z [gk Pk — % Pk — %5(%)] ) (3.6)
%

where gk and v do not vanish only for Q- and y-particles, respectively.



Since the densities of particles and holes satisfy the Bethe equations (2.1), their vari-
ations are not independent but are subject to

Spr(u) + 6pk(u) = Kij x op; . (3.7)

Here and in what follows the summation over the repeated indices is assumed. Expressing
the variations of the densities of holes in terms of the variations of the densities of particles,
one finds the variation of the entropy function

05(pr) = (e — i) 0pi + log (1 + € =%) Ky % 6p; (3.8)

where the pseudo-energies ¢, are defined through

etk = Lk (3.9)
Pk
Then, using the extremum condition 6F,(L) = 0, one derives the following set of
TBA equations
e = LE —log (1+€79) % Ky, (3.10)

where the right action of the kernels K, defined by (2.3) is used.

Note also that €,+ is defined only for [u| < 2. In principle, one could extend it to
|u| > 2 by saying that e~ v* = 0 for |u| > 2. It might, however, lead to discontinuities of
the y-particles pseudo-energies.

Taking into account that the entropy function can be written in the form

R dpy, .
s(pr) = o du log (1 + kT E’“) + (ex — iyk)pr + log (1 + e”‘fﬁ’“) Ky *pj, (3.11)

one finds that at the extremum (3.10) the free energy is equal to
1 dp
/ Z —ﬁlog 14 ek (3.12)

Finally, one uses that the energy of the ground state of the light-cone string theory is
related to the free energy of the mirror model as

E,(L) = lim %ﬁy(L) , (3.13)

R—o0c0

and gets the following expression
=1 dp¥? .

We see that for v = 7 the necessary condition for the ground state energy to vanish for
any L is
e Q=0 forany Q. (3.15)

It also imposes restrictions on pseudo-energies of other string configurations.



3.2 TBA equations explicitly

Here we list all TBA equations (3.10) explicitly taking into account that
10 =70, =8 =0, A = (1) 4 ha, ha=(-1)%h,  (3.16)

and we used this representation for ’yﬁ) to handle more efficiently the physically more

interesting case with v = .
Assuming summation over repeated indices and the index « in the equation for Q-
particles, the TBA equations for the pseudo-energies take the following form

e ()-particles

sl(2) vw

B — () (@)
—log (1 _ e y‘) * K9 —log (1 gt y+> *KiQ )

_ , e ,
e = L& —log (14 e @) * K99 _log <1 +e M’W) * KMQ (3.17)

e y-particles

(@)

(o) —e Qy 14 e M
€% = —log (1+e Q)*Ki +log ————— * K. (3.18)
14+ e ‘Mlw
e M |vw-strings
eg\jfw} = —log(1+e @)~ KM (3.19)
(@) 1— eiha7€1(1?
+log (1 + e_ww> * Ky —log ———5 % Ku
1— eiha—eyf
o M|w-strings
(@) 1— eiha—sfﬁg
eg‘jfw — log <1 I eeM/w> * Kppryr — log W * K. (320)
1—e" v

We see that (3.15) solves these equations for h = 0 if the pseudo-energies of y-particles
satisfy e~ = 1. A proper way to analyze these system for h = 0 is to consider the
perturbation theory in small h. A rough estimate seems to show that eéo_{) ~ h and e7@ ~
h?. We postpone detailed analysis for future.

4 Simplifying the TBA equations

In this section we simplify the system of TBA equations (3.17)—(3.20) by reducing most of
the equations to a local form. The local form can be also readily used to derive equations
for Y-functions which coincide with (or are inverse to) exponentials of pseudo-energies. We
will see that the recently conjecture Y-system [52] holds only for values of the spectral

,10,



parameter u satisfying the inequality |u| < 2. For other values of u the TBA equations for
Q-particles cannot be apparently reduced to the Y-type equations.
We introduce the Y-functions as

(@) (@) (o)
YQ =e @, Y]\(;"Lw = e Mlvw , Y]\(;"zv = e Mlw , Yj(:a) — Syt ’ (4.1)

and use the following universal kernel

9

-1
(K+1)yy=0un —s(Om1,N +m-1n8), s(u)= m, (4.2)
that is inverse to the kernel Kyg + dng
[oe)
Z (K + 1)1741]\[ (KNQ +0nQ) = 0@ - (4.3)
N=1

For more properties of the inverse kernel see appendix B.

TBA and Y-equations for w-strings

We begin our consideration with the simplest case of w-strings. We apply the inverse
kernel (4.2) to (3.20), and get the following equation

eiha
(0) (a) L
log Yy, = IMn log(1 —i—Yle)*s—i—(SMl logj*s, (4.4)
B Y(a)
+
where I;y is the incidence matrix
Iyn = Omv1,N +0m-1N (4.5)
and we used the following identity
o0
> (K + 1)y Kn =56y (4.6)
N=1

Since the functions Y§' are defined on the interval —2 < u < 2, the integral in the last term
of eq. (4.4) is taken from —2 to 2.

To derive the Y-equations for w-strings, it is convenient to define the operator s~! that
acts on functions of the rapidity variable u as follows

(f*s—l)(u):gl_i%lJr [f<u+g—ie>+f<u—§+ie>]. (4.7)
It satisfies the obvious identity
(sxs M) (u) = 6(u).

The operator s~! has however a large null space, and as a result in general

frstxs#f.

— 11 —



This also means that one may loose information by acting by the operator s~! on an

equation. We will see examples of such a loss in what follows.
By applying the s~! operator to both sides of the equation one immediately gets the
following Y-equations for w-strings

(@) y(@)— _ () () -
Vv = (e vy, (L4 vl it M >2, (4.8)
ciha
(@)
() + y(a)— _ (@) Y2
VT = (1)) W <2, (49)
v
AR AR R S ul>2,  (410)

where we introduce the notation Y]‘(/Ialzﬂi (u) = Y]‘(/Ialzﬂ(u + é Fi0).

These formulae show that the form of the Y-equations for M = 1 is not uniform with
respect to the parameter u. The reason behind is that Yj([a) are supported on the interval
(—2,2). Only egs. (4.8) and (4.9) have appeared in [50] and they were assumed to hold
)

for all values of u. Obviously, the uniform expression could be achieved provided Yj(ca
admit such an analytic continuation to the complex u-plane that Y_,(_a) (u) = v (u) for

|u| > 2. This continuation should be, however, compatible with the whole set of TBA

system. Currently it is unclear if this is indeed the case.

TBA and Y-equations for y-particles

Next we consider w-strings. Equations (3.18) for the pseudo-energies of y-particles can be

written in the form

1+ =
1 (@) _ _11 1 _ YMfew
oY1 = 3 log (14+Yg) » (Kgy + Kq) +log 15" » K, (4.11)
o
L+ o
l (a) o ll _ l M |vw
0g V(") = S log (1+ Yo) * (Kqy — Kq) +log ———4" + Kur (4.12)
o

where we used that the kernels Kfy can be expressed in terms of K¢ and the kernel K,
defined in (B.5).

By adding and subtracting, these equations can be cast in the form

Y(a)
log Y+(°‘) = log(1 + Yp) * Kqy, (4.13)
14—
(a) (Cl{) YJ\/I"U’LU
log V"Y' = —1og(1+YQ)*KQ+2log171*KM. (4.14)
Yithe

The last term in (4.14) can be replaced by (4.26) or (4.27) reducing all non-local terms to
the ones depending on Y-functions of ()-particles only.
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To derive Y-equations for y-particles, we need the following identities
(Kgy + Kg)xs ' =2K9 42601, Kyxs ' =Ky + 0w (4.15)

We get with their help

log V' 5571 = —log (1+ Y1) — log (1 + Yp) » K& (4.16)
1 1
v Mo
+log —— 4 log — M
Yy Vi

Now we subtract (3.20) from (3.19) for M = 1, and obtain

() 1+ o
Yl\vw YJE?\)
log —5 = —~log (1+ Yg) * K¢ 4 log e K - (4.17)
Y, y(a)
1w YM\w

Finally, subtracting (4.17) from (4.16), we derive the following Y-equation for y_-particles

(a)
y @+ y ()= _ Lt Y””w 1 (4.18)
- - (@ 1+Y;" '
1+ Y1|w + Y
Repeating the same procedure with Y_ﬁa), we get
1+v
log VI Y™ = log (1+ Yy) » (2KQ! — K¢1) + log 1'(1;1;’ (4.19)
+ Y1|w
1+ v
= 2log (1 +YQ)*IC§1 +log71|(v;;,
14+Y

where the kernel IC;QQ, is defined in (B.18). This equation cannot be reduced to the usual

local Y-system form.
(a)

We stress again that the equations for Y, are valid for u being in the interval (—2,2)
and the analytic continuation for |u| > 2, we have discussed after eq. (4.10), would impose
a consistency condition on the functions Yy due to eq. (4.13).

TBA and Y-equations for vw-strings

Now we can discuss vw-strings. We apply the inverse kernel (4.2) to (3.19), use an identity
K9 5 (K +1) gy = 0g-1,¢'5 + 0gn Ky * s, (4.20)

and, as a result, obtain the following equation

_ ot
() (@) G

lOg YM|UU} = IMN lOg(l + YN|vw) * S+ (SMl lOg W * S (421)
v

— log(l + YM+1) * S — 01 log(l + YQ) * KQy xS,
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where in Kg, * s we integrate over [—2,2]. By using (4.13), we can rewrite (4.21) in the
final local form
(@) (0) 1 - hey®
10g YM‘Uw = <IMN log(l + YN|vw) + 5M1 log W — log(l + YM+1)> * S, (422)
p— ef %
Jr
Now applying the s~! operator to both sides of the equation, one gets the following Y-

equations for vw-strings

(@)+ v (o)~ _ (a) (a) 1 :
YM\Uw YM|vw - <1 + YM—l\Uu;) (1 + YM+1|vw) 14+ YM+1 it M > 2’ (423)
14V | pmihay @
+ - 2 e N
Yl(ﬁﬁiu Yfﬁﬁu = o : oy lul <2, (4.24)
I+Yy 1 e_’han_ )
(@)
L+ Y2\vw

()+ y(a)= _
Yl‘vw Yl‘vw = T}é, |u| > 2. (425)

Finally, subtracting (4.4) from (4.21), we derive the following equation

14— (@)
Y]Eﬂ)vw L+ Y1|vw

log * Ky = log——— s (4.26)
1+ — 1+v
Y]g’“:u 1w

+10g(1+YM+1)*S*KM—|—10g(1—|—YM)*KMy*S*K1,

and by using (4.13), one can rewrite (4.26) in the form

1+ —a— (o)
Yzﬁn)m 1 +Y1\vw
log—— * Ky = log——— *s (4.27)

1+~ 1+v/,)
YMa\w 1w

(a)

v

+log(1 4+ Yarq1) x s« Ky + log —Y(a) *s* K.

These equations can be used to simplify eq. (4.14) for y-particles.

TBA equations for -particles

At last, we discuss the most complicated case of Q-particles. Our analysis is only partially
complete here because of a lack of understanding of the properties of the dressing kernel in
the mirror model. Still, we will be able to demonstrate that the transition from the TBA
equations to Y-equations is only possible for u taking values in the interval from —2 to 2.
Equations for the pseudo-energies of ()-particles can be written in the form

~ 1
—logYQ:LEQ—l—log(l—l—YQ/)*(KQ/Q—i—QKg,Q)—log 1+ —— | x KMG

(@) VWET
YM\vw
1- 25 ih ih
1 i 1 et et
—§logW*KQ—§lOg (1—@> (1—@> *KyQ, (428)
Y+
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where the summation over « is assumed, and we use (2.5), (2.10) and (2.23) to represent

the @-particles kernel in the following form

K§S (u) = —Kogr(u— ') — 2K50,(u, ), (4.29)
where we introduce the dressing phase kernel
1 d
Koo (u,u') = log S0 4,
Qe (w ) = 5——-log o (u, ). (4.30)

We now should apply the inverse kernel (4.2) to (4.28). To this end, in addition to for-
mula (4.6), we need the following formulae

Eg * (K +1)510 = 0qu(E1 — Eaxs) = 6n € * 5. (4.31)
Here

(Exs)(v) = /_OO du’ £(u)s(u' — v) (4.32)

:2(/_:—/200>du'10g< \/7D s(u — v)

where we introduce the function
&(u) :2log< ‘u—\/ D u—2)—Ou—2)), (4.33)

and 6(u) is the standard unit step function.

Next, we find the following action of the inverse kernel on K¢

KyQ/ *(K+ 1)Q Q= 5Q1( yl — Kyg*s) = 5@1(S—|—2K*8 (4 34)
(K % s)(u,v) :/ du' K (u,u')s(u' — ) / / du K(u,u")s(u —v)
—i/ / du’ K (u,u' +ie)s(u' —v),

where we use the kernels

K(u,v) = K(u,v) (0(—v—2) —0(v—2)), K(u,v)= %%uiv

(4.35)

We also need similar formulae for K%g

KMQ (K—|— 1) QQ = = 0pr+1 QS+51Q(KM1 KM2 ) = 5M+17QS—|—51QKM*S,

VwWT VwWT vwWT

(K % s)(u,v) = /_ Z du’ Ky (u, u)s(u' — v) (4.36)
(e
« <K<u + éM, u'> 4 K<u - éM, u'))s(u/ )
([ [
X<K<u+ éM,u'iie) +K<u— éM,z/:I:ie))s(u'—v),
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where

Bt () = (K <u + gM, v) + K<u _ éM, v>> (O(—v—2)— 0w —2)) . (4.37)

The kernels K (u,v) and K7 (u,v) obviously vanish only for |v| < 2. For other values of v
they are non-trivial and because of that the Y-system would not hold for |v| > 2.

The only formula we are missing is the one which gives the action of the inverse kernel
on the dressing phase kernel: K QZQ’Q” * (K + 1)5/1@ =7. Unfortunately, since the structure
of the dressing phase in the mirror model is unknown, we cannot proceed. We believe that
the result will be similar to what we found above for the other kernels

K&gn* (K +1)gho = 610K5 * 5, (4.38)

where the kernel K, 5, (u,v) would vanish for |v| < 2. Finding a formula for the kernel K3,
is necessary for understanding the structure of the TBA equations, and we hope to address
the problem in a future publication.

Applying now the inverse kernel (4.2) to (4.28), and assuming that @ > 2, we get the
following equation

14+ Yo (1 +Y,
_IOgYQ+IOg(YQIYQ+1)*S=10g< (1+Yq 1>)(<+ Q+1) >*S

14 —1 14+ —1
(1) (2)
YQ*I"U'LU YQ*I"U’LU

+2log (1+ Yo ) *» Kgign x (K + 1), (4.39)

We see that if the formula (4.38) would hold then applying the s~! operator to both sides
of the equation (4.39), one gets the following Y-equation for Q-particles

_ 1+ %> (1 - %>
+
YQ YQ _ < YQ(IJI‘UW YQ(221\vw

Yo1You  (1+Yo-1) (14 Yo4)

if Q>2. (4.40)

This Y-equation agrees with the corresponding equation of the Y-system in [50] if one
. . 1 2
identifies Yo = Yg.0, Y, = 1/Yor11, Yoo, =1/Yot1, 1.

Finally, the equation for @ = 1 takes the form

1 eihl eihg
. ihy iho ihy iho .
+L5*S—10g 1—% 1—% 1—% 1—% * K xs
y! v v v

1

“log [ 1+ —— | [14+ ——
v

M |vw M|vw

+2log (1 + ) * Koo+ (K +1)5); -

We recall that the functions Y§' are defined on the interval —2 < u < 2 and, therefore,
in all the formulae where they appear the corresponding integrals are taken from —2 to
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2. The equation above clearly demonstrates the absence of symmetry between y~- and
yT-particles. It does not immediately lead to the corresponding equation in the Y-system
of [50] for arbitrary values of the rapidity variable v which is the argument of the function
Y1 in (4.41).

Nevertheless, applying the s~! operator to both sides of (4.41), one gets the following

ihq iho
YYD (1 B W) (1 B W)

Y5 1+Y5 ’

equation

(4.42)

where

eih eth2
A = log (1 - (1>> (1 - (2)> (0(—u—2) +6(u—2)) (4.43)

5 eih1 eihz eih1 eihz 5
e (1-5) (1-55) (- 5) (- 5) 7

1 5 3
—log [ 1+ —5— | |1+ —5— * Ky +2log (1+ Yg) x Ky .
Yy Yy,
vw [vw

Here the first term on the right hand side guarantees that the second term on the right
hand side of eq. (4.41) contributes only for |u| < 2.

Since the extra contribution A vanishes for |u| < 2, in this case one recovers the
Y-equation for () = 1-particles

1 eih1 1 etho
YhY, ~y® Y@
L1 - - if |ul <2. (4.44)

This equation also agrees with the Y-system of [50] under the identification e_ih1Y£1) =
-1/Yi1, e—ihay @ — —1/Y7 1. Let us stress again that to derive (4.44) one uses that
E(w), K u), Ky u), Kg(u/,u) vanish for |u| < 2, and assumes the validity of
formula (4.38) for any Q'

Taking into account the important role the Y-system played in the recent studies of
the O(4) chiral model [19], it might seem reasonable to assume that only solutions of the
TBA equations satisfying the extra condition

A = 2min for all w and some n € Z, (4.45)

encode the spectrum of strings on AdSs x S°, and are relevant for the AdS/CFT corre-
spondence. Currently, however, we suspend the claim that it is really the case. In fact, it
seems that the solution of the TBA equations leading to the vanishing ground state energy
does not obey the condition, and if it is really the case then the Y-system is valid only for
|u| < 2. We hope to return to this question in a future publication.
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Let us finally mention that identifying

YQ = YQ,Oa eiihly_(l) = _1/Yi,15 eiihQY_@) :_1/Y1,*1’
e_ile_ﬁl) =Y, e_ihQYf) =-Yy o,
1 2 1 2
YCg\z))w: 1/YQ+171, YQ(2|1))w = 1/YQ+1,,1, YCS\ZU = Yl,QJrl, YCS\ZUZYL*Q*I’

one finds that all the Y-equations discussed above do match the corresponding ones in the
Y-system of [50].

5 Conclusions

In this paper we have derived an infinite set of the TBA equations for the AdSs x S°
mirror theory. There are several obvious questions to be answered. First, one needs
to rigorously establish the vanishing of Witten’s index (y = =) in the mirror theory,
the latter equals the ground state energy in the original string model, and see if/how it
implies the quantization of the light-cone momentum of string theory or, equivalently, the
quantization of the temperature of the mirror model. Second, one has to elaborate on the
properties of the dressing phase in the mirror theory. Third, one should find an analytic
continuation of the TBA equations to account for the excited states. All these questions,
of course, are not independent.

The Y-system we obtained from these equations (under certain unproved assumptions
about the dressing phase!) coincides with that by [50] only for u taking values in the
interval —2 < u < 2. For other values of u one has to assume the validity of (4.38), and
impose the additional condition (4.45) on the Y-functions. The condition, however, does
not seem to be compatible with the vanishing of the ground state energy, and if so the
Y-system could be valid only for |u| < 2.

Our brief comparison to the recent results [51, 52| reveals the following. The TBA
equations we derived in section 3 seem to agree with those of [51]. The detailed comparison
is difficult to carry out, however, due to notation differences between the various sections
in [51]. The simplified form of the TBA equations we obtained in section 4 does not appear
in [51, 52]. Once again, we see that the properties of our TBA kernels are such that they
admit a localized Y-system in the interval u € (—2,2) only. We could not find any indication
of this fact in [51, 52]. Such an unusual feature arises due to the TBA equation for Q-
particles and it is, of course, absent in the Y-system for the homogeneous Hubbard model.
Then, it is assumed in [51, 52] that the discrete Laplace operator annihilates the dressing
phase kernel. There seems to be no proof of this assumption in [52], and in the appendix
2 of [51] a proof is given based on the AFS form [45] of the dressing phase. This form,
however, is not valid in the mirror region because the corresponding series is not convergent.

We also see a certain difference with the findings of [52]. First of all, none of the TBA
kernels in [52] seem to contain the (square root) of the ratio z(u+1i/9Q)/x(u—1i/9Q), while
our kernels Kgy do. Further, as was argued in [34], the kinematical region of the mirror
theory corresponds to Imz* < 0 (or Imz* > 0) which is apparently different from the
choice |z7| > 1 and |z~ | < 1 indicated in [50, 52]. Indeed, the region |z > 1 and [z7| < 1
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is a “hour-glass” in figurel of [34], while the kinematical region of the mirror theory is a
“leaf”, where Imz* < 0 (or Ima2* > 0). Although both regions do include the physical
momentum of the mirror theory, it is only the leaf which contains all the bound state
solutions of the mirror theory corresponding to the first and the second BPS families [34].

In any case, in spite of all the differences and yet to be justified assumptions, the
present effort of deriving the TBA equations for the AdSs x S° mirror brings us closer
towards the final solution of the AdS/CFT spectral problem.
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A Mirror dispersion and parametrizations

In this paper we express all the quantities of interest in terms of the following function of
the u-plane rapidity variable

x(u) = % (u —iV4 - u2) , Im(z(u)) <0 for any u e C, (A.1)

with the cuts in the u-plane running from +o0o to +2 along the real lines. Our choice of
the square root cut agrees with the one used in Mathematica: it goes along the negative
semi-axes. Omne can check that with this choice of the cuts the imaginary part of z(u)
is negative for any u € C. According to [34], this function maps the u-plane with the
cuts onto the physical region of the mirror theory. To describe bound states of the mirror
model, one should also add either the both lower or both upper edges of the cuts to the
u-plane [34]. This breaks the parity invariance of the model.
The function x(u) obviously satisfies the condition

The variables 9% (u) used in [36] are expressed through z(u) as follows

29 (u) = m(u + ?) ;29 () = x(u — ?) : (A.2)

where the parameter ¢ is the string tension, and it is related to the 't Hooft coupling A of

SO

the dual gauge theory as g = ¥=.
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The momentum p%, and the energy EQ of a mirror Q-particle are expressed in terms
of z(u) as follows

ﬁ%u):gm<u—%?>—gx<u+%?>+4Q, (A.3)
£2u) = log % _ zarcsmh< zm) (A4)

and the momentum is real, and the energy is positive for real values of u. They satisfy
the relations

p(—u) = —pu), (p(w)" =p’),  E(-u)=E(w), (E(u)" =EW).
B Kernels

Let us introduce the following kernels

K(u,v):Q—m,\/T_uZu_v, (B.1)

and (c.f. [19])

- M
KM(U):ﬁd;ilOg<Z;z§>:%ﬁﬂ/{quﬂ’ —o0 <M< . (B.2)
The Fourier transform of the kernel is

Ky (w) = /OO du ™" Ky (u) = sign(M) e~ 1M«l/g (B.3)

and therefore
/OO du Ky (u —u') = sign(M) for any u'. (B.4)

Then the kernels Kfy are related to them as follows
K9 (u,v) + K9 (u,v) = Kg(u—v),

Koy(u,v) = K9 (u,v) — K9 (u,v) = <u——Q, > <u+ -Q, > (B.5)

and the kernels Ki as

KY9(u,v) — K¥9(u,0) = Kg(u —v), (B.6)
Kyg(u,v) = KgQ(u,v) + K_Z{_Q(u,v) = K(u,v + éQ) - K(u,v - éQ) . (B.7)

The important property of the kernel K M and K ;M’ is that they are positive for —2 <
u’ < 2, and satisfy

2
/ du Kyg(u,u') =1 for any u’. (B.8)
-2
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We also have
KM (') = Ky(u — ). (B.9)

Then the kernel KM% (u,u) can be expressed in terms of K, as follows

KooV (u,u') = Ky (u— '), (B.10)
M-1
Kyn(u) = Kyyn(uw) + Kn—m( +QZKN My2j(uw), M,N>0.
j=1

The Fourier transform of the kernel is

Ky (w) = coth (’%‘) (e_‘M_N”ng — e_(M+N)‘“Vg) —o0un, M,N>0. (B.1l1)

The inverse of the kernel is

(Rw)+1) | =bhun = 3) Garpn +on1n)  30) = 5
Z (K( )+1) 1N (IA(NQ(W)—F(SNQ) :5MQ- (B.l?)

Inverse Fourier of §(w) is

s(u) = 1 /OO dw e_iwué(w) -9 (B.13)
2r ) 4 cosh 452 ‘
There is this interesting identity
o0 . 1 )
> (Kuw(w) +oun) K (w) = 3(w) o (B.14)
N=1
One can show that
1 /
RN (u,u) = NN (u—u') + KN (u, ), (B.15)
where
NN’ 1 i , i, i ,
KTV (wu)=+ -z (K|lu+-Nuv+-N|-K(u——-N,u' —-N
2 g g g g
L i / i / i / i !
+ - |K{u—-N,u+-N")—-—K(u+-N,u ——N , (B.16)
2 g9 9 g9 9
and
! 1 !
KN () = G K — ) + K3 (u,0d). (B.17)
where
NN'( 1 i, i, A
KN (uu')y = == (K(u+-N,u'+-N'") —K(u—-N,u/ — -N
2 9 g9 9 g9
1 ‘ / i / i l i !
+=|(K{u—=N,u'+-N") =K(u+-N,'—-N") | . (B.18)
2 g g g g
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Below we list various identities necessary to simplify the TBA equations. The summa-
tion over repeated indices from 1 to oo is assumed

(K +1)y/n* Kn = 5001 - (B.19)
Ky (K + 1)Q Q= 5Q1( y1 — Ky % s) = 5@1(8 + 2K % s) (B.20)
(K * s)(u,v) = / du’ K (u,u)s(u' — v) / / u')s(u' —v)

_i/ / du/ K (u, 1’ + ie)s(u’ — v),

where we introduce the kernel

§ _ _ 1 VoZ—4 1
K(u,v) = K(u,v)(0(—v—=2) —0(v—2)), K(u,v)= DY ST (B.21)
and 6O(u) is the standard unit step function.
(K 4+ 150 * Kqry = dg1(K1y — s % Kay) (B.22)

(K1y — s % Kay)(u,v) = s(u,v) i2/ / du’ s(u — ') K (u' Fie,v). (B.23)

K" % (K +1)ghg = 0g-1,0'5 + 091Ky * s, (B.24)
(K + 1gon * K9 = 0o 1qs + 001K — s x K27, (B.25)

, , -2 00
K — 5% K29 = :|:</ +/2 >du'
—00

xs(u—u')(K (u':Fie,v—i—gQ') +K<u'$ie,@—§@’>) . (B.26)

(K + 1) MN'* Ké\;}/x = 5M+17Q8 + 018 * K (B.27)
KM 5 (K +1)5lg = 0ars1.05 + 01g(K iy, — K%}i 5) = 041,08 + 01g K % s,
[e.e]
(Kar * 8)(u,v) = / du/ Kpr(u,u)s(u' —v) (B.28)
—00

(e
X (R’ <u + éM, u') + I‘((u - éM, u/>>s(u/ — ) (B.29)
:i</_:+./200>du' |
><<K <u+§M, u'iie) —|—K<u— éM, u'iie))s(u/—v) . (B.30)
where

Ko (u,v) = <K <u 4 gM, v> 4 K<u - éM, v>> (B(—v—2)—6v—2)) . (B.31)
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The kernels K (u,v) and Ky (u,v) obviously vanish for [v] < 2.
Eg (K +1)50g = 0qu(€1 — Eaxs) = 6qn € * s, (B.32)

(€ %5)(v ):/ du/ E(u)s(u' — )

_2/ / dulog<

where we introduce the function

é(u)zzlog< ‘u—\/ D —u—2)—0(u—2)), (B.33)

V) sl - )

(K—l—l)QQ,*de/ 5@((2_;51_8*%) (B.34)
Ry e =
/ / dusu—u)\/Qi4 (B.36)

Ko * Ky :/_Qdu Kolu—u) K, (v, v) = (B.37)

/ 1 1
= K99 (u,v) — §KQ/,Q(u —v) + §KQ/+Q(u —v).
2
KQy * KQ/ = /2 du' KQy(u, u')KQ/ (u' - 1)) = (B.38)
QQ/ 1 1
= ’CQ (u, 1)) + §KQ/,Q(U — U) + §KQ/+Q(U — ?}) .

The following formula holds for |v| < 2

2K % s(u,v) = Kgy(u,v) + 2</ +/ )du' Koy(u,u’ Fie)s (u' —v+ é) . (B.39)
—00 2
Finally

(Kgy + Kg)xs ' =2K8 + 2001, Ky*s ' =Ky + 6. (B.40)

C Simplified TBA equations and Y-system

Here for reader’s convenience we list all the simplified TBA equations and also the Y-system
equations. Recall that we introduce the Y-functions related to the pseudo-energies as

(@) (@) (@)
Yo=e@, Yii, =P, Vi =il Y =5 a=12, (C)

and assume summation over repeated indices.

The simplified TBA equations for the Y-functions take the following form
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o M|w-strings: M >1 Y(‘a) 0

1 _ gl
Y(O‘)
log Y7, =log(1+Y3i) | JA+ Y370, ) %5+ 0 log ——5— #s (C.2)
-
o M|vw-strings: M >1 YO(‘?)?U =0
log Yy{i0,, = log(1+ Y37, )+ Y7l +s (C:3)
1-— e’ihQY_(a)
—10g(1 + YM+1) * S +5M1 1Og—(04) *x S
1— e thaYy
e y-particles
Y(a)
log Y( ) = 10g(1+YQ)*KQy, (04)
1+ o
log VIV = —log (1+ Yg) * Kq +2logTM1‘“”*KM (C.5)
Y(a)

M|w
e ()-particles for Q) > 2
(1+Yo )1+ Y1)

<1 " Y(l)l\ ) <1 - Y(Q)l\ >

+2log (1+Yo) x Kgign + (K + 1)gng  (C.6)

—log Yo +log(Yo-1Ygp+1) s = log * 8

e () = l-particle

1 eihl eihg
_1ogY1:log<1+?2>*s—log 1—@ 1—@ * 8 (C.7)
eihl eihg eihl eihg .
e (1-55) (1-75) (—> (— T

1 1 .
g [ 14 —— | [1+ —— | Ky xs
v e
M|vw M |vw

+2log (1 +YQ)*KQQ/*(K+ 1)Q/1 +LExs

The energy of the ground state of the light-cone gauge-fixed string theory on AdSs x S° is
expressed through the Y-functions as follows

~Q
E (L) = —/du > iﬂd%log(l +Yg) . (C.8)

With the notation Y*(u) = Y (u=+ é F10) for any Y-function, the Y-system equations
for u € [—2,2] take the following form
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M |w-strings

Vi i = (14 v, (14 vigly,) i M2,

Mlw = Mlw M+1|w
eiha
-yl
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where we assume the validity of the formula
2 -1 7 72>
KQ/Q// * (K —|— 1)Q/1/Q = 51QKQ/ * S.
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